In Vitro Studying the Effect of Adding Autologous Platelet Rich Plasma (PRP) to the Human Semen on the Sperm DNA Integrity

Dhafer Abbas Hamdan 1, Ali Ibrahim Rahim 1,2,3,4,* Ula M. R. Al-Kawaz 1

1High Institute of Infertility Diagnosis and Assisted Reproductive Technologies, Al Nahrain University, Baghdad, Iraq.
*aliibrahim.ivf@gmail.com
2College of Medicine, University of Kufa, Najaf, Iraq.
3Collage of Medicine, University of Al-Ameed, Karbala, Iraq.
4IVF Center, Al-Kafeel Hospital, Karbala, Iraq.

For conception and the development of healthy embryos, sperm DNA integrity is crucial. According to a growing body of studies, there is a strong correlation between sperm DNA damage and male infertility. Among the new medicines being developed in the medical field, the application of Platelet Rich Plasma (PRP) in human reproduction has yet to be examined. A total of 100 semen samples were used in the current experimental investigation. From November 2020 to June 2021, the research was conducted at the High Institute for Infertility Diagnosis and Assisted Reproductive Technologies. Masturbation was used to get an ejaculated semen sample. After semen analysis, the samples were separated into two equal parts, one without autologous PRP and the other with 2% autologous PRP, with the DNA fragmentation assessed using the Sperm Chromatin Dispersion Test. There was highly significant reduction in DNA fragmentation index (p < 0.001). The mean sperm DNA integrity was reduced after adding PRP (33.85±16.73 vs 38.55±16.64), Mean (± SE). PRP has been shown to improve human sperm DNA integrity.

KEYWORDS

PRP, DNA, Sperm Preparation, DFI, Sperm DNA Fragmentation

Received: 06-Oct-2021
Accepted: 30-Oct-2021
Published: 09-Nov-2021

How to cite:
Hamdan DA; Rahim AI; Al-Kawaz UMR; In Vitro Studying the Effect of Adding Autologous Platelet Rich Plasma (PRP) to the Human Semen on the Sperm DNA Integrity; Iraqi Journal of Embryos and Infertility Researches (IJEIR), (2021); 10(2): 90-100.
Doi: http://doi.org/10.28969/IJEIR.v10.i2.r7
1. Introduction

After one year of regular, unprotected sexual contact, infertility is defined as a couple's inability to conceive (Zegers-Hochschild, et al. [1]). Infertility affects around 15 % of couples globally, with 50 % of instances attributed to male factors alone or in combination with female factors. (Choy and Eisenberg [2]). Traditional semen analysis is still used to assess infertile men, despite the fact that it does not accurately predict male fertility or the success of assisted reproductive technology (ART), it is widely used. (Wang and Swerdloff [3]). In reality, a normal semen analysis is found in roughly 15 % of infertile patients (Agarwal and Allamaneni [4]). On the other hand, Sperm concentration, motility and morphology, might not adequately reflect sperm DNA integrity (Guzick, et al. [5]), which is harmful to embryo development, normal fertilization and ART success (Simon, et al. [6]). Platelets are megakaryocyte derivatives with α granules containing many secretory proteins. They are members of the growth factor, cytokine, and chemokine families, through growth factors, and their dense granules are involved in the acceleration and control of wound healing processes. (Carmona, et al. [7]). According to previous studies (Anitua, et al. [8], Rodriguez, et al. [9]), Platelets Rich Plasma (PRP) is a concentrated platelet fraction that is higher than baseline values. It is recommended that the platelet concentration in the PRP be 3 to 5 times higher than normal. PRP is a one-of-a-kind therapeutic option used in a variety of medical settings, such as orthopedics and dermatology (Lubkowska, et al. [10]). PRP's positive effects are mostly due to its different bioactive components. (Magalo, et al. [11]).

2. Materials and Methods

The study was approved by the High Institute for Infertility Diagnosis and Assisted Reproductive Technologies' ethical committee, which took 100 sperm samples from males who visited the infertility clinic at Al Nahrain University. Each participant had given informed consent to use the remainder of their sample before being included in the validation trial. The research began in November 2020 and ended in February 2021.
2.1. Sample Collection and Processing

Masturbation was performed to collect samples, which were then placed in sterile containers. Only one seminal sample was taken from each patient. Following receipt of the samples, they were placed directly in a 37 °C incubator to complete liquefaction in preparing for semen analysis. After multiple trials and pilot study for using different concentrations of PRP 2 %, 4 %, and 7 % it has been found that the 2 % was the best percentage for PRP preparation and yielding significant results (Bader, et al. [12]). Each semen sample was divided into two equal parts. The first was administered PRP at a concentration of 2 %, while the second was not. After incubation for 15 min., the Sperm Chromatin Dispersion (SCD) test was used to determine the DNA integrity of the sperm. The SCD tests are depended on the concept that when sperm are treated with an acid solution prior to lysis buffer, the DNA dispersion halos visible following the removal of nuclear proteins in non-fragmented DNA sperm, as shown in Figure 1, nuclei which are either marginally present or not present at all in fragmented DNA sperm nuclei, by using light microscopy (Agarwal, et al. [13]).

3. Statistical Analysis

The statistical package for the social sciences (SPSS version 23) computer software application was used to analyze the data. The degree of significance was determined using P-values of 0.05 or less. P-values of less than or equal to 0.01 were considered highly significant.

4. Results

Here we compare the sperm DNA fragmentation prior to and following the addition of PRP in infertile men with normozoospermia p<0.001, asthenozoospermia p<0.001, asthenoteratozoospermia p<0.001, oligozoospermia P=0.012, oligoasthenozoospermia P=0.002, oligoteratozoospermia P=0.135 and oligoasthenoteratozoospermia P=0.044, as shown in Table 1. The significant reduction in DFI (%) after than before adding PRP.
Table 1: Demographic parameters of patients enrolled in the study

<table>
<thead>
<tr>
<th>Groups</th>
<th>Before adding PRP</th>
<th>After adding PRP</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normozoospermia (N31)</td>
<td>37.32 ±18.05</td>
<td>33.00 ±18.88</td>
<td>< 0.001 P HS</td>
</tr>
<tr>
<td>Asthenozoospermia (N24)</td>
<td>42.38 ±19.56</td>
<td>36.46 ±18.85</td>
<td>< 0.001 P HS</td>
</tr>
<tr>
<td>Asthenoteratozoospermia (N4)</td>
<td>39.50 ±11.39</td>
<td>30.50 ±12.12</td>
<td>< 0.001 P HS</td>
</tr>
<tr>
<td>Oligozoospermia (N17)</td>
<td>35.88 ±16.07</td>
<td>32.47 ±15.80</td>
<td>0.012 P S</td>
</tr>
<tr>
<td>Oligoasthenozoospermia (N12)</td>
<td>37.67 ±8.08</td>
<td>32.42 ±9.14</td>
<td>0.002 P HS</td>
</tr>
<tr>
<td>Oligoteratozoospermia (N6)</td>
<td>37.67 ±23.76</td>
<td>35.00 ±23.53</td>
<td>0.135 P NS</td>
</tr>
<tr>
<td>Oligoasthenoteratozoospermia (N6)</td>
<td>39.17 ±6.79</td>
<td>35.67 ±8.94</td>
<td>0.044 P S</td>
</tr>
</tbody>
</table>

S: significant, HS: highly significant, NS: no significant, P: paired t-test

Figure 1: (A) spermatozoa with big halo (Normal sperms), (B) medium sized halo (Normal sperms), (C) small halo and (D) no halo (Abnormal sperms)

(85±16.73 vs 38.55±16.64), Mean (± SE), as shown in Figure 2.

5. Discussion

Around half of all reproductive problems are thought to be caused by male factor infertility. These problems either prevent sperm from being produced or impact sperm function after they have been produced. According to new medical therapies, in human reproduction, the use of autologous PRP looks to be a safe therapy option with a variety of potential benefits. (Lubkowska, et al. [10]). The current study's aims -in this regard- were to be one of the few that looked at the effects of PRP on a variety of sperm functionality characteristics before looking into the possible influence of PRP on human sperm DNA fragmentation for the first time. Although there have been no previous human research or papers on this topic (to the best of our knowledge), animal experimental investigations have revealed that PRP can assist to increase the sperm quality. PRP outperforms other treatments in terms of minimizing the fraction of sperm DNA fragmentation, according to the findings of this study, which support those of some experimental investigations that have indicated the influence of PRP in sperm activation. The biological function of autologous PRP in male

Figure (2): Comparison of mean DNA fragmentation (%) between PRP and baseline seminal fluid
infertility treatment was assessed by comparing DNA fragmentation of nontreated spermatozoa to those treated with 2 % PRP. Surprisingly, the second group’s DNA fragmentation was reduced. Figure 2 shows a comparison of sperm characteristics before and after PRP addition in all involved samples. The DNA fragmentation index decreased by a significant amount. Agreeing with (Bader, et al. [12]) who observed that PRP inhibits ROS by antioxidant and antiapoptotic action, resulting in a highly significant reduction in DNA fragmentation index. Because of the wide range of growth factors found in his alpha granules. The antioxidant Zn/Cu/SOD enzyme, a significant component of PRP, has been discovered to serve a protective effect in sperm motility, which is linked to sperm membrane integrity, in accordance with its mechanism of action. In fact, as a critical component of the Reactive Oxygen Species (ROS) scavenger system, its mode of action is based on decreasing lipid peroxidation (LPO) in human spermatozoa, which reduces DNA fragmentation caused by Hydrogen Peroxide (H₂O₂) exposure (Perumal, et al. [14], Lee, et al. [15], Zhao, et al. [16]). The use of Insulin growth factor (IGF1) to incubate sperm has been found to result in a significant reduction in DNA fragmentation (Susilowati, et al. [17]). In patients undergoing in vitro fertilization (IVF) or intracytoplasmic sperm injection (Obermair, et al. [18]) established a relationship between seminal plasma Vascular endothelial growth factor (VEGF) concentrations and pregnancy rates. Also, the results for this patient’s show reduction in DNA fragmentation, Zinc supplementation has also been proven to boost the production of metallothioneins, which help to keep seminal fluids consistent and prevent sperm from harm (Di Leo, et al. [19]). Metallothioneins have the ability to protect biological issues from oxidative stress damage by trapping harmful oxidant species including hydroxyl radicals and superoxide (Suriya, et al. [20]). Zinc in seminal plasma contributes to the stability of sperm chromatin (Björndahl and Kvist [21]).

6. Conclusions

Autologous PRP has been shown to improve human sperm DNA integrity. In patients who
have been diagnosed, a highly significant reduction in DNA fragmentation index was noticed in the oligoasthenozoospermia, asthenoteratozoospermia and asthenozoospermia, respectively. On the other hand, a significant reduction in DNA fragmentation index in infertile men with oligoasthenoteratozoospermia and oligozoo- spermia was realized. Additionally, there was no significant in DNA fragmentation index in men with oligoteratozoospermia.

Acknowledgment

We would like to acknowledge Al Nahrain University, Baghdad, Iraq.

Funding

This work received no funding.

Author Contribution

Hamdan, DA, performed the study, examined and reviewed results, and manuscript writing with the help and supervision of Rahim, AI, and Al-Kawaz, UMR.

Conflict of Interest

The authors declare no conflict of interest.

Ethical Clearance

The study was approved by the Ethical Approval Committee.

References

Authors at OrcID
Ali Ibrahim Rahim
https://orcid.org/0000-0003-4409-2050

Ula M. R. Al-Kawaz
https://orcid.org/0000-0003-3998-2665

Peer Review Information
Double-Blind Peer Review in which both authors and reviewers does not know each other.

This work was reviewed by
Dr. Laith Amer Al-Anbari
Dr. Haitham Oudah Al-hilfi

Editorial Policy
The editorial policy at IJEIR ensured that this article fit the standards of scientific publications.

This work was copyedited by
Dr. Taif Alawsi

Authors Biographies

Dhafer Abbas Hamdan
He received his B.Sc. in Biology from Al-Mustansiriya University, Baghdad, Iraq in 2004. He has been an employer in the Iraqi health ministry, Al-Risafa health directorate, Baghdad, Iraq for 20 years. Recently, he graduated from the High Institute of Infertility Diagnosis and Assisted Reproductive Technologies, Al Nahrain University with a master's degree in Applied Embryology.

Dr. Ali Ibrahim Rahim
He received his M.B.Ch.B. 2005, Faculty of Medicine, University of Kufa. His M.Sc. in Applied Embryology 2011 and his Ph.D. in Infertility and Clinical Reproduction 2019, High Institute for Infertility Diagnosis and Assisted Reproductive Technologies, Al Nahrain University. He had a research fellowship in clinical embryology and ARTs 2010, at Lubeck Medical University, Germany (as a part of an M.Sc. study). He is a faculty member for primary and
high studies in the Faculty of Medicine, University of Kufa. He is a faculty member in the College of Medicine, University of Al-Ameed. He is a faculty member for high studies in High Institute for Infertility Diagnosis and Assisted Reproductive Technologies, Al-Nahrain University. He is a trainer in the Arab and Iraqi Board for Medical Specialties in sub-specialty for Infertility and Assisted Reproductive Technologies. He is an administration member in the Iraqi Fertility Society. He is a trainer and consultant in many IVF centers in Iraq. He is a trainer and consultant in the IVF Center in Al-Kafeel Specialized Hospital. He has 10 years' experience as a senior clinical embryologist in the Fertility Center, Al-Sadr Medical City, Najaf. He was trained in many IVF Centers in Germany, Belgium, Iran and Jordan. He published a lot of studies in many national and international scientific journals.

Dr. Ula M. R. Al-Kawaz

He is a Professor of Urology at Al Nahrain University. He is a fellow of the Iraqi Board for Medical Specialization, Council of Urology since 2006, and a fellow of the European Board of Urology, since 2009. He published more than 27 articles both local and international. He supervised many M.Sc. and Ph.D. students.

© 2021 Author(s)

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

http://creativecommons.org/licenses/by/4.0/.

Hamdan, et al. http://doi.org/10.28969/IJEIR.v10.i2.r7